Пластическая деформация
Строение металлов
Холодная пластическая деформация монокристалла
Элементы теории дислокаций
Движение дислокации и пере ползание дислокации
Вектор Бюргерса
Возникновение и размножение дислокаций
Силовые поля
Холодная пластическая деформация поликристалла
Равенство деформаций
Упрочнение при холодной деформации
Кривые упрочнения
Влияние температуры и скорости деформации
Виды деформации при обработке металлов давлением
Влияние температуры на сопротивление деформированию
Влияние горячей деформации на свойства металла
Условие постоянства объема
Степень деформации и смещенный объем
Влияние скорости деформации на пластичность
Сверх пластичность
Напряжения
Напряжения в координатных площадях
Напряжения в наклонной площадке
Понятие о тензоре напряжений
Главные касательные напряжения
Диаграмма напряжений Мора
Условия равновесия для объемного напряженного состояния
Осесимметричное напряженное состояние
Плоское напряженное состояние
Малые деформации и скорость деформаций
Неразрывность деформаций
Однородная деформация
Условие пластичности
Смысл энергетического условия пластичности
Связь между напряжениями и деформациями
Механическая схема деформации
Схемы главных напряжений
Принцип подобия
Контактное трение
Характер нагрузки
Принцип наименьшего сопротивления
Неравномерность деформаций
Методы определения деформирующих усилий
Решение дифференциальных уравнений
Основы метода расчета деформирующих усилий
Метод линий скольжения
Свойства линий скольжения
Характеристики
Методы графического построения
Жесткопластическая схема
Связь полей линий скольжения с полями скоростей
Построение годографа скоростей
Понятие о методе верхней оценки
Метод сопротивления материалов
Метод баланса работ
Понятие о пластическом методе
Краткое сопоставление различных методов
Осадка
Удельное усилие
Осадка правильной призмы и цилиндра
Осадка полосы конечной длины
Неоднородность деформации при осадке
Толстостенная труба под равномерным давлением
Протяжка
Протяжка заготовки круглого сечения
Выдавливание
Удельное усилие деформирования
Объемная штамповка в открытых штампах
Удельное усилие деформирования заусенца
Элементы штамповки в закрытых штампах
Скручивание
Уравнения равновесия
Дальнейшее увеличение кривизны
Вытяжка

Жесткопластическая схема

Жесткопластическая схема Поле линий скольжения, представленное на рис. 6.14, существенно отличается от полей, показанных на рис. 6.15, 6.17, 6.18, 6.19а и 6.20. В первом случае линии скольжения распространяются от одной границы — нагруженной к другой — свободной. Во втором случае поля линий скольжения не охватывают всего объема металла. Легко усмотреть, что при попытке продлить, расширить любое из указанных полей линий скольжения нарушается какое-либо из условий правильного их построения. Любая другая линия скольжения, дополнительно проведенная или продолженная, например а'Ь' на рис.' 6.20 и аЬ на рис. 6.17, пересечет вертикальную ось симметрии под углом, отличающимся от 45°, т. е. покажет наличие сдвигающих напряжений на оси симметрии, что абсурдно.
Таким образом, при построении нолей линий скольжения в общем случае наблюдается, что объем металла разделяется на две области: одна область пластическая, занимаемая полем, другая же считается жесткой. При этом предполагается, что металл на границе областей скачкообразно переходит в пластическое состояние.
 Такая концепция;- широко применяемая при решении различных задач, носит название жесткопластической схемы.
 На рисунках видно, что границами, разделяющими пластические и жесткие зоны, являются линии скольжения. Этими границами могут быть и огибающие линий скольжения.
 Правильность построения поля линий скольжения с наличием жесткопластической границы определяется двумя условиями: пересечение линиями скольжения осей симметрии под углом 45° и контакт жестких зон в одной точке. В точке контакта все компоненты напряжений, определяемые по двум соприкасающимся полям линий скольжения, равны между собой. Жесткопластическая граница, как правило, заранее не задана, и определение ее является составной частью решения задачи методом линий скольжения. Вместе с тем жесткопластическую схему можно применять и при решении задач другими методами, причем жесткопластической границей в этом случае бывает необходимо задаться на основании экспериментальных данных или каких-либо соображений, лежащих в основе применяемого решения. Жесткопластическая схема представляет собой концепцию математического порядка. Физически никакой резко выраженной жесткопластической границы нет. Существует определенный приграничный слой, в котором приращения упругих и пластических деформаций вполне сравнимы. Поэтому жесткопластическая схема отнюдь не предопределяет физически точных решений. В настоящее время делают попытки (Е. М. Макушок) выявить напряженно-деформированное состояние в переходных зонах, что дает перспективы получения уточненных решений.




 
Яндекс.Метрика